

OPTIMAY
OptiFlash and CmdFlash Utilities

User Manual

Version 3.0

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 2 of 27

Agere Systems Proprietary

OptiFlash and CmdFlash Utilities

User Manual
Copyright © 2002 Optimay GmbH.

All rights reserved.

The use and copying of this product is subject to a license agreement. Any other use
is prohibited. No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system or translated into any language in any form by any means
without the prior written consent of Optimay GmbH. Information in this manual is
subject to change without notice and does not represent a commitment on the part of
the vendor.

Document Summary

Document Type User Manual

Document Title OptiFlash and CmdFlash Utilities

Document Number 100-01-FMU

Version 3.0

Author Martin Lohse

Date 10-Oct-2002

Change History

Rev. Date Author Change

1.0 15-Oct-01 Lohse Initial edition

2.0 08-Jan-02 Lohse Added description of passive boatloader
protocol; made some minor corrections

3.0 10-Oct-02 Lohse Added new section on how to use the
OpiFlash DLL in user applications;
corrected various errors in the text.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 3 of 27

Agere Systems Proprietary

Table of Contents
1 INTRODUCTION ...4

2 OVERVIEW...4
2.1 HOW IT WORKS ..4
2.2 BOOTLOADER TYPES..4
2.3 BASIC OPERATIONS..5

2.3.1 Flash mode ..5
2.3.2 Verify mode..5
2.3.3 Read mode ...5

2.4 A NOTE ON S-RECORD FILES ..5
3 USING OPTIFLASH...6
3.1 THE SETTINGS WINDOW ...6

3.1.1 Settings/General ..7
3.1.2 Settings/COM Port ..9
3.1.3 Settings/Flash & Verify ...10
3.1.4 Settings/Read ...11

3.2 THE LOG WINDOW..12
3.3 PROFILES ...12
3.4 ERRORS ...12
4 USING CMDFLASH...14

5 TIPS AND TRICKS...16
5.1 USING TWO PORTS IN PARALLEL ..16
5.2 WHAT TYPE OF BOOTLOADER? ..16
5.3 TROUBLES FLASHING THE PHONE?...17
5.4 GENERATING COMMAND LINE OPTIONS ...17
5.5 REPORTING PROBLEMS ..17
6 USING OPTIFLASH IN YOUR OWN APPLICATION...18
6.1 THE FUNCTIONS ...18

6.1.1 Main functions...18
6.1.2 Helper functions ..18

6.2 THE STRUCTURES...20
7 BOOTLOADER PROTOCOL...21
7.1 PASSIVE BOOTLOADER...21

7.1.1 Initial setup phase ...21
7.1.2 Command phase ..23
7.1.3 Synchronisation ...23
7.1.4 Command loop ..23
7.1.5 Command format...25
7.1.6 Response format ..25
7.1.7 Bootloader commands...26

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 4 of 27

Agere Systems Proprietary

1 Introduction
Transferring code and data to or from a mobile phone requires a special program.
Optimay provides two utilities for this purpose: the GUI-based “OptiFlash”, intended
for interactive use; and the command-line driven “CmdFlash”, intended for use in
batch files and Perl scripts. The utilities share a common functionality, and it may be
assumed that–unless otherwise stated–anything said about OptiFlash applies equally
to CmdFlash.
These tools are intended for use in a development, not a production environment.
The requirements for these two different environments differ greatly. Refer to section
7, "Bootloader protocol", for a description of the communication protocol
implemented in the boot loader. This can be used to implement a flash loader
suitable for production needs.

2 Overview

2.1 How it works
When the phone is switched on, the bootloader code in ROM checks whether
OptiFlash is connected to the phone and is trying to “flash” it. If OptiFlash is not
connected, the bootloader starts the protocol stack software.
Otherwise OptiFlash and the bootloader establish communication. To use the client-
server terminology, the phone acts as a server, which runs in a loop and accepts
commands from OptiFlash, the client.
Because space in ROM is scarce, and because ROM code/data is difficult to change,
the bootloader is kept small and simple. It understands just sufficient commands to
be able to load data into the phone’s RAM. After establishing communication with
the phone, the first thing OptiFlash does is to use the bootloader to download a so-
called ‘flash loader’ to the phone’s RAM. This is the program that provides all the
necessary functions to erase and/or program the flash memory on the phone. Again,
this code will act as a server, accepting commands from OptiFlash. Since there are
many different flash chips from various manufacturers, all of which differ in their
sector layout and capabilities, the flash loader does not contain much information
about specific chips. It is merely capable of detecting the flash chip type and of
programming the chip. All the details about the chip are handled on the PC side by
OptiFlash, which is aware of the sector layout and other idiosyncrasies of the chips.

2.2 Bootloader types
There are two different types of bootloader communication protocol implemented in
the ROM of Trident chipsets: active and passive. The names indicate whether the
phone initiates the communication (active) or waits for OptiFlash to initiate the
communication (passive).
The active bootloader initiates communication with the PC by sending a special byte-
sequence to the serial port when the phone is switched on. If OptiFlash is connected
and wants to “flash” the phone, it recognises this sequence.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 5 of 27

Agere Systems Proprietary

The passive bootloader merely listens to the serial ports for a short period of time. If
it detects a special character, it assumes that OptiFlash is connected and wants to
“flash” the phone. The advantage of the passive approach is that other data
applications are not confused by receiving unexpected characters from the serial
port.

To determine which type of bootloader is in a particular phone, refer to section 5.2,
"What type of bootloader?". The passive bootloader is built into all new chipsets;
the active bootloader is currently being phased out.

2.3 Basic operations
OptiFlash supports three modes of operation: flash, verify and read.

2.3.1 Flash mode
In this mode the contents of an S-record file (SRE for short) are loaded into the flash
memory of the phone. It is used to apply software updates to the phone.

2.3.2 Verify mode
In this mode the contents of an SRE file are compared with the contents of the
appropriate memory ranges in flash memory of the phone. This is a convenient and
fast way to check whether the phone contains the correct software or data.

2.3.3 Read mode
This mode is used to read memory ranges from the flash memory on the phone into
an SRE file on the PC. This is useful for backing up important data which is phone-
or user-specific (e.g. calibration data, phonebook data).

2.4 A note on S-record files
OptiFlash expects that all files it handles will be in Motorola S-record format . All files
written by OptiFlash are in this format.
A SRE file is an ASCII file containing addresses and data in hexadecimal form,
guarded by a checksum byte at the end of each row. Conventionally, the filename
extension is ‘.sre’. The user does not need any deeper knowledge about SRE files,
but it is useful to understand some basics about this format.
Since the SRE contains not only data but also the addresses where this data should
be written to or read from, the data in the file constitutes multiple regions in
consecutive memory. When loading a SRE file OptiFlash will check that all memory
addresses are in ascending order and that the memory regions are not overlapping
(which would lead to overwriting of content).
If both software and data need to be downloaded to the phone, the two SRE files can
simply be concatenated in the correct order and the resulting single SRE file flashed
into the phone.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 6 of 27

Agere Systems Proprietary

3 Using OptiFlash
This is the main window of OptiFlash:

The file name shown is that of the file that will be loaded/verified. This can be
changed via Options/Settings (see below) or via "Drag & Drop". The list box contains
a history of the most recently used files. The history is maintained on a per-profile
basis (see section 3.3, "Profiles"); i.e. every profile has its own history list that is
independent of the other profile history lists.
There are four buttons, three for the basic operations OptiFlash supports, and a
fourth one to cancel the operation currently in progress (greyed out in this picture).
Once you have made all the necessary settings for your intended operation, you
merely have to click the appropriate button. OptiFlash now initializes the operation.
This may take a few seconds, depending on the chosen operation and on the size of
the involved SRE files. When OptiFlash is ready, it prompts you to switch on the
phone by displaying the message “Power on mobile”. Do not power on the phone
before that prompt is displayed, otherwise the communication setup will fail.
The currently used COM port(s) are shown in the lower right corner of the window.

3.1 The settings window
The most important menu item is the settings window, which can be reached via
Options/Settings from the main window.
The settings window consists of four different tab sheets, which are explained below.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 7 of 27

Agere Systems Proprietary

3.1.1 Settings/General
On this tab sheet all the general settings can be selected.

Specify hardware platform
Here you specify the type of hardware you want to flash/verify/read. This is the
most important setting, as this describes various details of the hardware to
OptiFlash. If you select an incorrect platform here, it is very likely that OptiFlash
will not be able to communicate with the platform.
The parameters needed to flash the MS are stored in a platform definition file
(platform.def) which is supplied by Optimay.

Flash erase passes
This setting specifies how many times a flash sector should be erased (1..8). It is
supplied for debugging purposes–the number of passes should be set to 1 for
normal operation. A higher number does no harm (apart from reducing the life of
the flash chip), but consumes considerably more time.

Operation phases
This option is for special development purposes. It must be set to Default for
normal operation. The other two settings determine which phases of the loading
process will be executed. When Stop after BL is selected, OptiFlash will load the
currently selected flash loader into the phone and will then exit. When Start at FL
is selected, OptiFlash will assume that a flash loader is already loaded into the
phone and will start sending commands to it.

Debug mode
Enabling debug mode causes additional information to be written to the log
window. If you are experiencing problems while flashing a phone and want
assistance from Optimay, it is absolutely essential to have this option enabled and
to send the resulting log file to Optimay.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 8 of 27

Agere Systems Proprietary

Differences only
This option allows for more efficient data transfer. When enabled, OptiFlash
checks every sector that would be affected by the currently selected SRE file. If
the sector has the same contents as those specified by the SRE file it is not
changed, thus saving the time for required for programming the flash memory .

Extended protection
Enabling this option reduces the probability of a break in the serial-link
communication causing corrupted data in a flash sector. When new data has to
be added to a sector which already contains data, then the old data must be
merged with the new data before the sector is erased and rewritten. If extended
protection is disabled the sequence of events is:

1) Make a copy of the flash sector in RAM.
2) Erase the sector.
3) Download the new data and merge into the RAM copy.
4) Write the RAM copy back to the sector.

If extended protection is enabled, the sequence is changed to:
1) Make a copy of the flash sector in RAM.
2) Download the new data and merge into the RAM copy.
3) Erase the sector.
4) Write the RAM copy back to the sector.

Since in this case the flash loader has all the required data before it starts to make
changes to the flash, the danger of corruption is much less.

No retries
Normally, when a command times out before being executed, it is retried several
times. When this option is enabled, no retries are attempted and the operation is
terminated immediately with an error.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 9 of 27

Agere Systems Proprietary

3.1.2 Settings/COM Port
This tab sheet is used to select the COM ports.

Up to twelve ports are supported. Additionally you can select the maximum transfer
speed OptiFlash will use to communicate with the phone. However, OptiFlash will
use a slower speed if either the PC’s or the phone’s serial hardware is incapable of
handling the selected speed.
You can set up to two COM ports. The first COM port is mandatory and is used to
transfer the flash loader to the phone. If a second COM port has been specified
(optional), then OptiFlash will use this COM port as well as the first one to
communicate with the flash loader, thus increasing the transfer speed. If the second
COM port is not specified, all communication is done using the first COM port.
The reason for having two different COM ports results from idiosyncrasies of
USB/serial adapters. They impose some latency in the serial communication that will
exceed timeout values in active boot loaders. The trick is to transfer the flash loader
into a phone with an active boot loader over the first COM port using a normal serial
cable. Then to benefit from the higher transfer speeds of the USB/serial converter,
the rest of the communication is done over the second COM port. This scenario is
only necessary for phones with an active boot loader; phones with a passive boot
loader should be able to cope with the communication latencies.
The speed increases you will experience when you use two COM ports in parallel is
highly dependant on the PC used, the current workload on the system, the quality of
the serial kernel drivers, etc.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 10 of 27

Agere Systems Proprietary

3.1.3 Settings/Flash & Verify
This tab sheet is used to specify the SRE image filename and define protected
regions of memory for flash and verify operations.

File to load or verify
This is the complete filename of the SRE image you want to use for flashing or for
verifying.

Reserved memory regions
Here you can specify one or more reserved memory regions, i.e. memory ranges
which OptiFlash must not change. OptiFlash checks whether the specified SRE
file contains any memory ranges which overlap any of the reserved regions. If so,
the operation is terminated with an appropriate error code.
Reserved memory ranges can be used to protect valuable data in the phone from
accidental overwriting.
Memory ranges in OptiFlash can be specified in decimal or hexadecimal notation
(prefixed with 0x). The lower and upper ends are separated with a dash ‘-‘. The
ends of the range are inclusive, e.g. the range 5-10 contains the 6 addresses 5, 6,
7, 8, 9 and10.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 11 of 27

Agere Systems Proprietary

3.1.4 Settings/Read
This tab sheet is used to specify the SRE filename and define the required regions of
memory for a read operation.

Save File
This is the complete filename of the SRE file into which the data which has been
read from the phone will be saved. You can select whether OptiFlash will ask for
confirmation before overwriting existing files.

Read Ranges
Here you specify the memory range(s) which are to be read out of the mobile. For
further information about memory ranges as they are used by OptiFlash, refer to
the description of Reserved memory regions in section 3.1.3, "Settings/Flash &
Verify".

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 12 of 27

Agere Systems Proprietary

3.2 The log window
A log window can be opened/closed via Options/Log. All output OptiFlash is
generating goes into the log window. It is useful to find the exact cause of an error,
especially when used in conjunction with the debug option enabled.

3.3 Profiles
The user can define multiple profiles. All the settings (except the global ones) are
saved into a profile. This makes it easy to maintain collections of settings which are
appropriate for various operations. For example, you can have profiles for:

− saving the calibration data of the phone
− flashing in the latest software version
− exchanging user data.

The file history on the main window is maintained separately for every profile, i.e. two
different profiles have two different histories.

3.4 Errors
If OptiFlash does not complete an operation successfully, one the following error
conditions will be shown:

ERR_ABORT
The user has aborted the operation.

ERR_BAD_CMDLINE
The given command line could not be successfully parsed because of syntax
errors.

ERR_BAD_PARAMS
The parameters passed to the DLL are invaid.

ERR_BAD_PLATFORM
The specified hardware platform does not exist or the platform definition file
(platform.def) is corrupted.

ERR_BAD_SREC_ADDR
The SRE file contains an invalid address. Either the addresses are not in
ascending order, or the address lies outside the flash chip.

ERR_BAD_SREC_CHECKSUM
There was a checksum error for a line in an SRE file (i.e. the SRE file has been
corrupted).

ERR_BAD_SREC_FILE
A file is not a valid SRE file.

ERR_CMD_FAILED
A command sent to the phone failed.

ERR_COM
The specified COM port could not be opened. It may be in use by another
program.

ERR_CRC
All transmissions over the serial link are guarded by CRC checks. There was a
CRC mismatch.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 13 of 27

Agere Systems Proprietary

ERR_FILEIO
General problem with reading/writing files.

ERR_FLASHTYPE
Either the type of the flash chip in the phone is unknown to OptiFlash, or the
chip is defective.

ERR_LEGACY_LOADER
The specified flash loader is too old to be used with this version of OptiFlash.

ERR_NOMEM
Insufficient memory to complete the operation.

ERR_PROTOCOL
There was a problem with the protocol on the serial link between the PC and
the phone. Either OptiFlash received something unexpected, or the link is
defective.

ERR_RANGES_OVERLAP
Two memory ranges overlap.

ERR_SETUP
An error occurred during the setup-phase of the flash loader.

ERR_TIMEOUT
The operation has exceeded its timeout period and has been aborted.

ERR_TOO_MANY_RANGES
Too many memory regions have been defined.

ERR_TOO_MANY_RETRIES
An operation has repeatedly failed and the maximum retry count has been
exceeded.

ERR_UNKNOWN_HW
OptiFlash could not identify the hardware platform.

ERR_UNSUPPORTED
The executable has attempted an operation which is not supported by the DLL.
(Cf. ERR_WRONG_DLL below.)

ERR_VERIFY_DIFFERENCE
The verify operation found a difference between the given SRE file and the
contents of the flash memory in the phone.

ERR_WRONG_DLL
Both OptiFlash and CmdFlash consist of an executable (the GUI and the
command-line interpreter respectively), and a DLL. The version numbers of the
executable and the DLL do not match.

ERR_WRONG_FLASHLOADER
The specified flash loader is not suitable for this type of phone.

ERR_WRONG_LOADERFILE
The SRE file containing the flash loader is invalid in some way.

ERR_WRONG_LOADFILE
The SRE file containing the image to be loaded is invalid in some way.

ERR_WRONG_READLENGTH
An invalid memory range has been given for a read operation.

ERR_WRONG_SAVEFILE
An invalid filename was specified for the SRE file into which data read from the
phone is to be saved.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 14 of 27

Agere Systems Proprietary

4 Using CmdFlash
The command line utility “CmdFlash.exe” is intended for use in batch files and Perl
scripts. It supports the same set of operations and options that OptiFlash does.
A few notes about the command-line options:

• The order and the case of command line options is not important.
• If the value of an option (i.e. the right side of the ‘=’) contains blanks, the value

has to be enclosed in double quotations marks.
• Unless otherwise stated below, if an option is specified more than once, then it

is the last occurrence which is used.
Here is a short description of the available options; default values are in bold type.
References such as Debug mode are to the more detailed descriptions given in
section 3, “Using OptiFlash”.

/com=<1..12>[,<1..12>] Settings/COM Port
Specifies the number(s) of the COM port(s) to be used.

/maxspeed=<#>[,<#>] Settings/COM Port
Specifies the maximum transfer speeds (in bytes/second) for the COM port(s).
Default is 115200 bps.

/debug=<0/1> Debug mode
Disables (/debug=0) or enables (/debug=1) verbose output

/diff=<0/1> Differences only
Disables (/diff=0) or enables (/diff=1) the differential flashing mode.

/erase=<1..8> Flash erase passes
Specifies the number of erase passes for a flash sector.

/extprotect=<0/1> Extended protection
Enables (/extprotect=1) or disables (/extprotect=0) the extended
protection option.

/file=<filename> File to load or verify
For /mode=flash

Specifies the the full filename of the SRE file containing the image to be
flashed into the phone.

For /mode=verify
Specifies the full filename of the SRE file with which the phone’s flash
memory contents are to be compared.

/mode=<flash/verify/read>
Specifies the required operation.

/noretry=<0/1> No retries
Enables (/noretry=0) or disables (/noretries=1) retries for a failed
operation.

/phases=<all/bl/fl> Operation phases
Specifies which phases of the flashing process are to be performed.

bl download the flash loader
 (“Stop after BL” in OptiFlash)
fl communicate with the (already downloaded) flash loader
 (“Start at FL” in OptiFlash)
all both of the above
 (“Default” in OptiFlash)

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 15 of 27

Agere Systems Proprietary

/platform=<platform name> Specify hardware platform
Specifies the type of hardware connected to OptiFlash.

/read=<#-#> Read Ranges
Specifies a memory range to be read from the phone. Use multiple /read
options to specify multiple read regions.

/readfile=<filename> Save File
For /mode=read:

Specifies the full filename of the SRE file into which the contents of the flash
memory are to be written.

/reserved=<#-#> Reserved memory regions
Specifies a reserved memory range. Use multiple /reserved options to
specify multiple reserved regions.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 16 of 27

Agere Systems Proprietary

5 Tips and tricks

5.1 Using two ports in parallel
For performance reasons it is possible to use two COM ports simultaneously.
OptiFlash will use the first COM port to talk to the phone’s boot loader. For phones
with an active bootloader it is important, that this COM port is connected to the phone
using a normal serial cable. For passive bootloaders, this can be either a serial cabel
or a USB/serial converter.
When the communication phase with the bootloader is complete, OptiFlash will
switch to the fastest port for communication with the flash loader. When OptiFlash
has to do bulk data transfers to the phone, it will use all defined ports simultaneously.
It is not necessary that all the used ports be operated at the same baud rate.
OptiFlash will distribute the transferred data across the individual ports according to
the used transfer speeds.
Using two ports in parallel is dependent on many PC-related factors, such as:

• system load
• quality of kernel drivers for the used ports
• mixture of different drivers or multiple instances of a single driver

As a result, the benefit in flashing speed is highly PC-dependent; but it should never
be slower than using a single port.

5.2 What type of bootloader?
To find out which type of bootloader is contained in the phone’s ROM, you can do the
following:

1. Connect a dumb terminal to the phone (115 KBaud, 8N1) and switch on the
phone.

2. If the first two characters you see on the terminal are ‘OK’, the phone has an
active bootloader.

3. If you don’t see ‘OK’, connect to the other UART and retry from step 1. If you
still don’t see ‘OK’, continue with step 4.

4. Switch off the phone and, keeping the question mark key (‘?’) pressed, switch it
on again.

5. If you now see some exclamation marks (‘!’), the phone has a passive
bootloader.

6. If you don’t see the exclamation marks, something is wrong with either the
phone, the OptiFlash/phone setup, or the cables.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 17 of 27

Agere Systems Proprietary

5.3 Troubles flashing the phone?
If you have troubles flashing at all on a slow PC (laptops in particular are sometimes
tricky), try the following:

• Use a different serial port. Laptops in particular sometime have UARTs that
don’t supply enough power to operate the level shifter properly. You could try a
CardBus serial port.

• If you are using an USB/serial converter, try to flash the phone using a normal
serial cable and see if that works.

• Check if the Windows FIFO settings have been changed. The recommended
setting is ‘default’.

• Check that the voltage to power the phone is about 4.2V.
• Disable the ‘debug’ option
• Close the log window
• Use the command line tool “CmdFlash” instead of “OptiFlash”

5.4 Generating command line options
Whenever you click one of the flash/verify/read buttons on OptiFlash’s main window,
the appropriate command line options representing your current settings will be
written to the OptiFlash.ini file under section [Global] as value “LastCmdLine”. It
can then simply be copy/pasted into a perl script, etc.

5.5 Reporting problems
Should you experience any problems with OptiFlash, please do the following:

1. enable debug mode
2. open the log window
3. repeat the failing operation
4. save the log to a file
5. send the log file to Optimay.

Without this information, it is nearly impossible to determine the reason for any
problems.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 18 of 27

Agere Systems Proprietary

6 Using OptiFlash in your own application
All the functionality of OptiFlash is contained in a DLL named flashdll.dll (called
OptiFlash DLL in the following). The two programs OptiFlash and CmdFlash are just
different frontends to make the DLL’s functionality available to the user. You can use
this DLL in your own applications in order to flash phones. All necessary
declarations and definitions can be found in the file OptiFlashDLL.h.

6.1 The functions
The OptiFlash DLL API consists of six functions. They all return FLASH_SUCCESS
in case of success and an appropriate error code otherwise.

6.1.1 Main functions
The three main functions are FlashInit, FlashLoad and FlashFinish.

unsigned int FlashInit (FlashIO *pIO, FlashParameters *pParams);
This function has to be called first in order to be able to use the OptiFlash DLL.

pIO points to a structure of type FlashIO. A handle will be placed in
the structure which is required by several other DLL functions.

pParams is either NULL or points to a structure of type FlashParameters.
If supplied, the structure will be initialised with default values.

unsigned int FlashLoad (FlashIO *pIO, FlashParameters const *pParams);
This function performs a specified flash operation.

pIO points to the initialised FlashIO structure.
pParams points to a FlashParameters structure containing a description

of the required operation.

unsigned int FlashFinish (FlashIO *pIO);
This function must be called after all flash operations have been performed. It
releases the internally allocated resources.

pIO points to the initialised FlashIO structure.

6.1.2 Helper functions
The are three helper functions that are convenient, but not required, for using the
OptiFlash DLL: FlashParseOptionString, FlashMakeOptionString and
FlashGetErrorString.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 19 of 27

Agere Systems Proprietary

unsigned int FlashParseOptionString (FlashIO *pIO, char *pszCmdLine,
unsigned int *puOptions,
FlashParameters *pParams);

This function parses a specified command-line options string and places the
results in a FlashParameters structure.

pIO points to the initialised FlashIO structure.
pszCmdLine points to a nul-terminated character string containing the

command line options.
puOptions points to a variable into which the number of options will be

placed. If the command line contains errors, *puOptions will be
set to 0 and the return value to FLASH_ERR_BAD_CMDLINE.

pParams points to the FlashParameters structure.

unsigned int FlashMakeOptionString (FlashParameters *pParams,
char *pszCmdLine,
unsigned int uMaxLen);

This is the inverse function to FlashParseOptionString; it constructs a
command-line parameter string from the values in a FlashParameters
structure.

 pParams points to the FlashParameters structure.
pszCmdLine points to a character array into which the command line options

will be placed as a nul-terminated string.
uMaxLen specifies the size of the character array. If the constructed

command line exceeds this size, the function will fail with an
appropriate error code.

unsigned int FlashGetErrorString (unsigned int uError, char *pszBuffer);
This function converts an error code into a descriptive error text.

uError specifies the error code.
pszCmdLine points to a character array into which the error text will be

placed as a nul-terminated string. The supplied buffer must be
large enough to accommodate the string (50 characters or
more).

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 20 of 27

Agere Systems Proprietary

6.2 The structures
There a two defined structures, FlashIO and FlashParameters.

FlashIO
contains a handle used internally by the OptiFlash DLL, and (optionally) pointers
to callback routines. The callbacks will be invoked to supply the application with
display information (status messages, progress of operations etc).
Before passing this structure to OptiFlash, the ulSize member must be set to
sizeof FlashIO.

FlashParameters
contains various parameters for the flashing process itself. This structure can be
either filled directly by the calling application, or can be filled by using a command
line string and passing it to the function FlashParseOptionString.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 21 of 27

Agere Systems Proprietary

7 Bootloader protocol
It may be found desirable to develop an application which is able to communicate
with a phone without using OptiFlash (for production issues for example). The
following is a description of the communication protocol that is implemented in the
phone’s ROM. The protocol can be used to load code and data into the phone’s
RAM and execute it. There are two different variations of bootloader protocols,
‘active’ and ‘passive’. The ‘passive’ protocol is the newer protocol and is the only
one that will be used in the future.

7.1 Passive bootloader
The bootloader will do a minimal EMI (External Memory Interface) setup appropriate
for the hardware platform it is running on. External RAM will be mapped to address 0
(mapping range 256KB). No further assumption apart from the RAM mapping should
be made about the EMI setup.
All that the bootloader is capable of, is copying data into RAM or reading data out of
RAM. Every operation beyond this has to be done by a user-written program that is
to be loaded into RAM by the bootloader.

7.1.1 Initial setup phase
When the phone is powered on, the bootloader enters the initial setup phase. In this
phase the bootloader checks whether a PC is attached to phone and if so, whether
an application wants to communicate with the bootloader. If the bootloader does not
detect such an application, it transfers control to the code in flash memory.
Otherwise it enters the bootloader protocol.
After power-up, the bootloader in ROM checks cyclically all available UARTs to see
whether characters are being send to the phone. If the phone does not receive a ‘?’
character in ~200ms on any UART, the bootloader will transfer control to the code in
flash.
If the bootloader receives a ‘?’ on one of the UARTs, it repeatedly sends ‘!’
characters over this UART until either a timeout occurs or a ‘#’ character is received
on that UART.
A flow chart of the initial bootloader protocol phase is shown below.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 22 of 27

Agere Systems Proprietary

u=0

Read char
from UART u

received a '?'

timed out ?

no

yes

yes start stack

u=u+1

no

u > available
UARTs

no

yes

Send '!' char over
UART u

Read char from
UARTu

received '#' ?

Proceed to
command

phase

yes

timed out ?

yes

no

no

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 23 of 27

Agere Systems Proprietary

7.1.2 Command phase
When the initial setup phase is complete, the bootloader enters the command phase.
This is basically a loop that waits for the PC-side application to send commands.
All commands consist of multiple 4-byte codes (called 4CC = four character code). A
list of the defined 4CCs can be found in the bootloader source code (file blprot.h).
Most of the commands (send by the PC application) and the responses (from the
bootloader) have the same structure. There are two exceptions: the PC_SYNC
command, which is used for synchronisation, and the PC_DONE command, which
ends bootloader execution.

7.1.3 Synchronisation
If the PC application loses synchronisation, it sends the 4CC for synchronisation
(PC_SYNC) and stops sending characters until it receives a synchronisation
acknowledgement (MOBILE_SYNC_ACK) from the mobile. When the bootloader
encounters PC_SYNC, it enters a loop that reads characters from the UART and
discards them. When no more characters are received, the bootloader sends
MOBILE_SYNC_ACK. Now the application and the bootloader are synchronised
again.

7.1.4 Command loop
During the command phase, the bootloader is basically executing a loop in which it is
waiting for commands to be sent by the PC application. These commands are then
executed by the bootloader and an appropriate response is send to the application. If
the communication loses synchronisation, it is the responsibility of the application to
re-synchronise. Whenever the bootloader times out while waiting for a command, it
sends a MOBILE_ASTRAY code to the PC (this is useful for debugging, to check
whether the phone is still alive).
The command loop is terminated by one of two events:

• the wait for a command times out
The bootloader aborts the communication and starts the stack code in flash
memory.

• the PC_DONE command is received
The bootloader transfers control to the code at the beginning of RAM.

A flow chart of the command phase protocol phase is shown below.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 24 of 27

Agere Systems Proprietary

Read command
from UART u

Received valid
command ? time out ?no too many

failures ?

Start stack in
flash memory

Send
MOBILE_ASTRAY

yes

yes

no

Increment failure
counter

no

Received
PC_DONE
command ?

yes

Start code in
RAMyes

Failure counter = 0

Execute command

no

Send response to
PC

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 25 of 27

Agere Systems Proprietary

7.1.5 Command format
All commands sent by the PC application (except PC_SYNC and PC_DONE) have the
same basic message layout. Every code in the message is 4 bytes in size, though
the transmitted data can have any size.

 Contents of field Description

1 4CC command token The 4CC token of the requested command.

2 Size of associated data The size in bytes of the data associated
with this command.

3 Associated data The data associated with this command.
Must be exactly the number of bytes as
specified in step 2.

4 CRC over associated data A 32-Bit CRC of the data in field 3.
5 4CC PC_EOM End-Of-Message token (PC side).

Note: steps 4-5 are only present if the size of the associated data in step 2 is not 0.

7.1.6 Response format
All responses sent by the bootloader (except MOBILE_SYNC_ACK and
MOBILE_ASTRAY) have the same basic message layout. Every code in the
message is 4 bytes in size, though the transmitted data can have any size.

Field Contents of field Description

1 4CC MOBILE_RESP Start-Of-Response token

2 4CC command token The command token, for which this
response is the answer.

3 MOBILE_ACK | MOBILE_NACK Depending on the success or failure of the
requested command, the appropriate
token is send.

4 Size of associated data The size in bytes of the data associated
with this response.

5 Associated data The data associated with this response.
Must be exactly the size specified in field
4.

6 CRC over associated data A 32-Bit CRC of the data in field 5

7 4CC MOBILE_EOM End-Of-Message token (mobile side)

Note 1: fields 4-6 are only present if the command completed successfully, i.e. field

contains MOBILE_ACK.
Note 2: fields 5-6 are only present if the size of the associated data (field 4) is not 0.

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 26 of 27

Agere Systems Proprietary

7.1.7 Bootloader commands
Below is a list of commands understood by the bootloader during the command
phase. The input and output descriptions refer to the data associated with the
commands.

Note: where bit numbers quoted, bit 0 refers to the low-order bit. In general, bit n
refers to the bit with value 2^n.

PC_SYNC

See description in section 7.1.3, "Synchronisation"

PC_INFO

Input: none
Ouput:

Field Type Contents

1 UINT32 Bits 0- 7: bootloader version (minor)
Bits 8-15: bootloader version (major)
Bits 16-23: bootloader type
Bits 24-31: unused

2 UINT32 Content of the Trident ID register
3 UINT32 Index of UART used for communication (starting at 0)

4 UINT32 Max. size in bytes the bootloader is able to receive, i.e.
no command send to the bootloader may exceed this
size !

PC_DATA
Input:

Field Type Contents

1 UINT32 Address in RAM (starting at 0) where the transmitted
data should be placed

2 UINT32 Size of transmitted data in bytes
3 - Data to be transmitted

Output: none

 Optimay GmbH, a subsidiary of Agere Systems 15-Oct-02
 Reference Platform Group Copyright © Optimay GmbH. All rights reserved

 OptiFlash and CmdFlash Utilities Page 27 of 27

Agere Systems Proprietary

PC_SUCK

Input:

Field Type Contents

1 UINT32 Address in RAM (starting at 0) of the data to be sent to
the PC

2 UINT32 Number of bytes to send

Output:

Field Type Contents

1 - Requested data

PC_DONE

This command will cause the bootloader to jump to address 0 in RAM, i.e. the
bootloader execution ends and control is passed to the code just loaded into RAM.

	Introduction
	Overview
	How it works
	Bootloader types
	Basic operations
	Flash mode
	Verify mode
	Read mode

	A note on S-record files

	Using OptiFlash
	The settings window
	Settings/General
	Settings/COM Port
	Settings/Flash & Verify
	Settings/Read

	The log window
	Profiles
	Errors

	Using CmdFlash
	Tips and tricks
	Using two ports in parallel
	What type of bootloader?
	Troubles flashing the phone?
	Generating command line options
	Reporting problems

	Using OptiFlash in your own application
	The functions
	Main functions
	Helper functions

	The structures

	Bootloader protocol
	Passive bootloader
	Initial setup phase
	Command phase
	Synchronisation
	Command loop
	Command format
	Response format
	Bootloader commands

